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Abstract. In the developing world, majority of people usually take
para-transit services for their everyday commutes. However, their in-
formal and demand-driven operation, like making arbitrary stops to pick
up and drop off passengers, has been inefficient and poses challenges to
efforts in integrating such services to more organized train and bus net-
works. In this study, we devised a methodology to design and optimize
a road-based para-transit network using a genetic algorithm to opti-
mize efficiency, robustness, and invulnerability. We first generated stops
following certain geospatial distributions and connected them to build
networks of routes. From them, we selected an initial population to be
optimized and applied the genetic algorithm. Overall, our modified ge-
netic algorithm with 20 evolutions optimized the 20% worst performing
networks by 84% on average. For one network, we were able to signifi-
cantly increase its fitness score by 223%. The highest fitness score the
algorithm was able to produce through optimization was 0.532 from a
score of 0.303.

Keywords: Complex Networks · Network Optimization · Genetic Algo-
rithm.

1 Introduction

As cities grow with the influx of urban migration, the capacity and efficiency
of their transportation systems have consistently been challenged with the con-
sequential boost in travel demands [3]. And before our transportation systems
reach their limits, governments must focus more on improving transportation
capabilities instead of focusing on adding more infrastructure (Braess’s Paradox
[5, 6]).

Dense urban areas like Metro Manila, Philippines have had little success
addressing transportation capabilities. Due to the limited operations of high-
capacity transport systems, passengers have mostly preferred road-based para-
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transit services like jeepneys3, express shuttles, tricycles4, and pedicabs5 [2]. This
is also the case in other developing world cities, with diverse vehicle categories
(i.e. tuk-tuk, minivans, etc.), because they can pass through smaller roads, and
are more demand-responsive and affordable [13]. However, such transportation
services do not have formal stops and were arbitrarily planned to serve the
entrepreneurial interests of its private operators. In particular, they have been
observed to stop anywhere to pick up a hailing passenger and to drop them
off. As a response, local governments have attempted to regulate, integrate and
rationalize their services [3] by re-assessing and formalizing the route network,
and consolidating operators.

Inasmuch as we want to improve the efficiency of public transportation net-
works, some topological and geospatial optimizations bear negative consequences
to their operations [12]. One can reduce the spacing between designated stops,
which can result to an increased number of stops available in an area. With more
stops, public utility vehicles will stop more often, resulting to longer waiting
times in subsequent stops. Thus, there has to be a balance between accessibil-
ity and efficiency by assessing how the geospatial layout and spacing between
designated stops could affect the overall performance of a road-based transporta-
tion network. In addition, since road networks in the developing world are more
prone to disruptions (i.e. flooding, poor road conditions, etc.) [7], we also have
to consider the robustness and vulnerability of any mode of transportation that
will use them.

This study aims to use network centrality measures and genetic algorithm
to optimally design efficient, robust and invulnerable para-transit networks,
that governments can use in planning the integration of para-transit services
to higher-capacity transportation networks. As a case study, we applied this
methodology to four (4) cities in Metro Manila and generated intra-city jeepney
networks.

The next section discusses some significant related works in designing trans-
portation networks. Section 3 discusses our methodology for network generation
and optimization. In section 4, we share our results and analysis on the per-
formance of our methodology. Lastly, we provide our conclusion and plans for
future work in sections 5 & 6.

2 Related Works

Planning transportation systems require stakeholders to look at different aspects
like travel demand, land use and urban form, and transportation coordination
and scheduling, among others. Focused on minimizing the number of transfers,
[8] developed an optimization model using an operations research approach.
However, its mixed integer programming implementation can be limiting given
the large search space and multiple conflicting constraints involved.

3 A popular public utility vehicle with a capacity of 20-22 passengers
4 An auto rickshaw consisting of a motorbike and a sidecar
5 A cycle rickshaw consisting of a bicycle and a sidecar
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In a survey of works from 1998 to 2012 on designing transport networks
by [9], they concluded that genetic algorithms are more suited to handle the
complex and non-linear nature of this problem. And in almost all works sur-
veyed, they optimized irregular grid network structures to have the least cost for
passengers and operators. In addition, [14] considered the location of school dor-
mitories to optimize the location of bus stops to be installed. The resulting bus
network design reduced the number of bus stops, total route length, and travel
distance between dormitories. On the other hand, [11] focused on maximizing
the number of satisfied passengers while minimizing transfers and travel time.
Taking a different direction, [12] designed transport networks based on a city’s
geospatial distribution and used genetic algorithm to generate bus routes with
the least travel time for passengers. After which, they assessed how each type
of geospatial distribution affected the robustness of the network. However, the
networks were not recreated to address negative effects on their robustness.

In relation to para-transit operations, [1] minimized the operation costs of
a jeepney route in Taft Avenue, Manila by considering the waiting time before
operation, length of the time when ignoring stops, the number of passengers and
amount of time to board the jeepney, waiting cost of commuters for the jeepneys
to arrive, length of travel time, length of time to accelerate and decelerate, and
length of time a jeepney dwells in a particular stop. In China, [10] optimized the
networks of customized buses in terms of maximum passengers served, passenger
travel time and arrival delays, and line revenues.

While many have considered operational factors in optimizing transporta-
tion networks, which represent regular occurrences, very few have regarded un-
precedented scenarios and anticipated interruptions in planning their networks.
Thus, we intend to simulate random failures and targeted attacks on the de-
signed transport network and iterate using genetic algorithm to minimize their
effects.

3 Methodology

This section discusses our methodology which starts with the collection and pre-
processing of road network data, followed by the generation of an initial set of
candidate stops. Then, the stops are connected to form routes. Finally, the gen-
erated networks are optimized for its efficiency, robustness and invulnerability.

3.1 Data

We collected the road networks and boundaries of four (4) Metro Manila cities,
namely, Manila, Makati, Paranaque, and Quezon City using OSMnx [4]. To avoid
redundancies, we used a network that only contains nodes for road intersections
and joints.
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3.2 Stop Generation

First, we generated stops by following the lattice, random and N-hub geospatial
layouts [12]. In a lattice layout, stops are generated equidistant from each other,
while in a random layout, the location coordinates were uniformly distributed
within the city boundaries. Lastly, the stop locations in an N-hub layout is gen-
erated by first defining the location of the N hubs representing areas of high trip
generation, such as central business districts. We used a covariance coefficient
of 65 to provide an ideal shape of a circle revolving around the specified hub.
The stops were generated by getting random samples from a multivariate normal
distribution. After generating the stops, some were positioned in unusual and
unrealistic locations, like in the middle of parks. Thus for poorly placed stops,
we adjusted their locations to nearest road segments (Figure 1).

Fig. 1. Two stops (red circles) were initially generated far from intersections of major
roads. The yellow circles indicate where their new locations are.

3.3 Route Network Generation

In connecting the stops, we used a maximum allowable walking distance (dmax)
value as a threshold for choosing candidate stops to connect to. This is based on
a person’s tolerance of how far they can walk from a stop to their destination.

In creating a route R0, a starting stop S(0,0) is chosen in random. Then,
we used dmax as a discriminating factor for nearby stops, so they cannot be
selected anymore until the creation of another route. The stops beyond dmax are
now candidates and are assigned exponentially decreasing probabilities based on
their Euclidean distance from the stop to connect to:
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p(nd) =
e−d(ns,nd)

λ
(1)

where ns is the starting stop and nd is the destination stop, d is the Euclidean
distance function and λ is a normalization constant. From these candidates, we
select S(0,1) and connect it to S(0,0). We repeated the same steps until there are
no more stops to discriminate or to connect to. With this algorithm, we made
sure that there are no cycles, but there will be instances wherein not all stops
will be part of the network. In such cases, they will be removed. In this study,
we created 25 routes to build the networks.

Fig. 2. Generated route networks for Quezon City with 100 stops following the (a)
N-Hub, (b) Lattice, and (c) Random geospatial layouts.

Generated Route Networks. We generated 960 undirected route networks
using a combination of layout and maximum allowable walking distance values
to observe the consistency of our algorithms. For each of the four (4) cities in
our scope, we used the lattice, random, and 1-hub and 2-hub layouts (Figure
2). For each of these layouts, we generated route networks using 300m, 550m,
and 800m as dmax values. Each edge has a corresponding weight representing
distances in meters.

3.4 Network Optimization

After initially generating route networks, we optimized them in terms of effi-
ciency, robustness, and vulnerability using a genetic algorithm.

Network Metrics. In optimizing the generated route networks, we used the
following network metrics in evaluating their fitness scores. First, we computed
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for the efficiency of a route network that gives us an idea of how straightforward
a simulated trip is from a source to a destination. For each network, we randomly
selected 1,000 source and destination stop pairs and computed their weighted
radius of gyration by (a) creating an adjacency matrix, (b) computing for the
shortest path using Dijkstra’s algorithm, and (c) incorporating a penalty for
possible transfers between routes. The weighted adjacency matrix for all selected
pairs (i,j) in the network is represented by:

Ai∗j


d(ni, nj), if a route directly connects from ni to nj

w ∗ d(ni, nj), if there is more than 1 transfer from ni to nj

0, if i = j.

It has all the edges in the graph, including the walking edges between stops
connecting different routes. We assigned a weight of 10 to these edges because
walking is roughly 10 times slower than riding a jeepney. Lastly, we normalized
the efficiency scores by getting the ratio of its score to the number of randomly
selected source-destination pairs (Equation 2).

E =

∑1000
i=1

dp∑
p∈Paths widp+20T

1000
(2)

Next, we assessed their robustness by randomly removing stops from the
network until there’s nothing to remove. This simulates the possibility of stops
suddenly becoming inaccessible because of unexpected closures, floods, and con-
gestion. Aside from network robustness, we also measured how vulnerable the
network is to targeted attacks by removing stops in order of their degrees, start-
ing from the highest degree until nothing is left. As we removed stops from the
network for both robustness and vulnerability simulations, we computed for the
average path length and network diameter. The average path length is the mean
of the lengths of all shortest paths. This factor tells us the average number of
stops needed to traverse the network from any stop. The network diameter is
the longest shortest path of a network which gives us an idea of the maximum
number of stops needed to traverse without repetition or cycles.

Using these simulations and metrics, we computed for the ratio of the average
path length over the network diameter at every 5% interval, which indicates how
close the network is to being destroyed. For this ratio, higher values indicate low
robustness and high vulnerability.

After running these metrics for all 960 generated route networks, we observed
that most route networks got disconnected or have reached their peak at 15% and
30% node removals, after simulating vulnerability and robustness, respectively.
Thus for computational efficiency, we used the ratio of the average path length
over the network diameter at those thresholds for the fitness function.

Fitness Function. Considering the efficiency, robustness, and vulnerability
scores, we derived the fitness function as:
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F (G) =
αE − βR− δV
α+ β + δ

(3)

where E is the efficiency score, R is the robustness score, and V is the vul-
nerability score, with α, β, and δ as they respective weights. A higher weight of
80% significance (α) was used for efficiency since the straightforwardness from
source to destination affects daily operations. Straightforwardness aside, it was
also observed that a minimum of 70% is required to produce positive fitness
scores for better optimized networks. On the other hand, robustness and vulner-
ability were given the weights of 10% each (β and δ) since they simulate seasonal
events.

Higher scores are better for efficiency while lower scores are better for ro-
bustness and vulnerability. Thus, we subtracted the vulnerability and robustness
scores from the efficiency of the network. Lastly, everything is then divided by
the sum of the weights for normalization.

Genetic Algorithm. In this study, we optimized the 20% worst performing
networks from the pool of 960 generated networks. We ranked them based on
their current fitness scores. For each network to be optimized, NA, we randomly
selected a network with a good fitness score from the 20% best performing net-
works as its pair, NO.

At the beginning of each evolution, we randomly selected the number of
routes to be mutated: M ∈ {0, ..., 3} where P (M = 0) = 0.7, P (M = 1) = 0.2
and P (M = 2, 3) = 0.05. To produce a child network, we randomly selected
route IDs from both parents and replaced the routes from NA with the routes
of the same route IDs from NO. In each evolution, we produced a generation
of 10 child networks, ranked by their fitness scores. If the highest ranked child
network had a higher fitness score than one of the parents, then that child is
selected as a parent in the next evolution, replacing the current parent with the
lower fitness score. If no child had a higher fitness score than both parents, the
current parents are selected again for generating children in the next evolution.
We stopped the genetic algorithm at the 20th evolution because it was observed
to have reached a plateau.

4 Results and Analysis

In evaluating the generated route networks, we first looked into the effects of
an initial stop layout and different values for the maximum allowable walking
distance on the efficiency, robustness, and vulnerability of route networks. After
optimizing the worst performing networks, we looked at how much the networks
improve in terms of efficiency, robustness, and vulnerability.

Effects of Layout and Maximum Allowable Walking Distance For each
city, we generated 20 networks per combination of geospatial layouts (Lattice,



8 B.P.V. Samson et al.

Random, 1 Hub, 2 Hubs) and dmax (300m, 550m, 800m). Each network had 100
stops and 25 routes. We had a total of 960 generated routes. We first analyzed
how our defined network characteristics correlate with our metrics from the
fitness score.

Fig. 3. Correlation matrix of all network characteristics with the derived fitness func-
tion metrics.

In Figure 3, we focused on the correlation of the network characteristics
towards our fitness function. Based on the matrix, we observed that among the
three fitness function metrics, the efficiency of a network had strong positive
correlation to five (5) route network characteristics.

First, a high number of edges meant that there will be more possible paths
from source to destination. It lessens the possibility of selecting paths that use
routes that are either not directly connected at a stop or have many route trans-
fers. Second, as more stops become close to each other in terms of number of
hops in between, the straightforwardness of the route network becomes better.
This reduces the need to transfer between routes even in longer distances but
this would also mean that distances between stops are much greater.
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Aside from closeness in terms of the number of stops in between, the efficiency
scores also showed a strong positive correlation with the closeness centrality using
spatial distance. This time, as the spatial distance of a path (in km) becomes
shorter for most source-destination pairs, the faster it is to travel because of
shorter trips. At the same time, as more stops get used by multiple routes and
become hubs, it allows shorter commutes between stops. A passenger could reach
different destinations provided from a stop with a high degree.

Fig. 4. Network Diameters and Average Path Lengths during the simulation of targeted
attacks and random failures after every removal of additional 5% stops from the network
for Manila having a Lattice Layout with a dmax of 300m.

Lastly, a high average number of stops per route means that there are many
stops which can be connected to connect shorter paths with other straightforward
routes. Having more available paths will contribute to the lessening of transfers
between routes, thus, improving the efficiency score of a network.
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Threshold of Robustness and Vulnerability After simulating random fail-
ures and targeted attacks, we then observed at which point a route network’s
diameter and average path length reached their peaks. The peak indicates the
destruction or disconnection of network. We got the average network diame-
ter and average path length at every 5% stop removals among the 20 route
networks for each configuration. Once this has been achieved, we recorded the
stop removal with the highest average value. Finally, we got the most frequent
occurring percentage removal among all the configurations.

After simulating targeted attacks to the networks, we observed that 44% of
them started to disconnect after removing at least 15% of the stops (Figure 4a
& 4c). At the same time, 31% of the networks had their longest diameters after
removing at least 30% stops (Figure 4b & 4d).

4.1 Optimization

We then compared the network metrics of the 20% worst performing networks
before and after optimization. Having a positive difference for efficiency means
that the efficiency score improved. Having a negative difference for the robustness
and vulnerability means that the robustness and vulnerability scores improved.

Table 1. Average Network Characteristics of the 20% Worst Performing Route Net-
works

Metric Unoptimized Optimized

Number of Edges 162.037 166.22
Diameter 8.667 10.185
Average Path Length 3.814 4.017
Average Closeness Centrality 0.238 0.259
Average Closeness Centrality(Distance in Km) 0.0001 0.0001
Average Betweenness Centrality 0.03 0.034
Average Degree 3.638 3.741
Average Number of Stops per Route 76.951 73.412
Average Route Distance 14.855 24.846
Average Path Distance 2.277 2.213
Efficiency Score 0.33 0.552
Vulnerability Score 0.42 0.415
Robustness Score 0.42 0.423

Table 1 shows the average network characteristics of 27 route networks sam-
pled from the 20% worst performing networks, before and after their optimiza-
tion. It can be observed that the number of edges, network diameter, average
path length, and average route distance increased as the efficiency score increased
for the optimized network as compared to the unoptimized network scores. This
is because having longer routes in the network means that more stops are reach-
able in one route and if more stops are reachable in one route, it reduces the



Optimizing Road-based Para-transit Networks using Genetic Algorithm 11

possibility of more transfers, making a network more straightforward and effi-
cient. It can also be observed that the vulnerability score decreased a little while
the robustness score almost maintained its score. A decrease in the vulnerability
and robustness scores means that the scores got better, even by a little margin.
It makes sense that there is little improvement for the scores since they have
lower weights as compared to the weight of the total efficiency or total weighted
radius of gyration. However, the average scores for the characteristics tell us that
the efficiency, vulnerability, and robustness scores improved in general for the
optimized versions.

Fig. 5. A sample optimized network for Manila with a random layout and a dmax of
300m.

As an example, Figure 5 shows an original and optimized network for Manila.
Though the changes are not so visually apparent, it has gained a lot in terms of
number of edges (from 175 to 228) and average distance per route (from 14km
to 30km). At the same time, we were able to decrease its diameter (from 9 to 6)
and average path length (from 4 to 3).

Overall after the optimization, 18 out 27 networks improved its efficiency, 13
out of 27 networks improved its robustness, and 9 out of 27 networks improved
in terms of vulnerability. In terms of the overall fitness scores, the optimized
route networks showed an 84% improvement over the unoptimized networks on
average. However, there are 2 instances, among the 27 networks, that had lower
optimized scores.
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5 Conclusion and Future Work

In this study, we devised a methodology to design transportation networks for
para-transit services. In generating the networks, we initially followed a geospa-
tial layout for distributing stops and used a maximum allowable walking distance
to connect the routes. We then optimized the networks in terms of efficiency, ro-
bustness and invulnerability. To test our methodology, we generated 960 routes
for four (4) Metro Manila cities. Our genetic algorithm was able to improve the
network metrics of the worst performing networks.

There are still some aspects of the research that we were not able to consider.
For example, instead of following a geospatial layout, a database of amenities or
travel demand data could improve the positioning of the stops. Another recom-
mendation is considering the width of a road in deciding how many routes can
use it.
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